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Dense Hand Pose Estimation

input image fully convolutional neural network dense pose deformation-free space deformable hand model

Dense Regression Network



Applications

¢ Human motion tracking ® Recognizing body language
e Animating digital characters ® Recognizing human activities

¢ Human-computer interaction e Generating body models



Challenges

Pose Space

* Ahand has 27 degrees of freedom.

* Deep learning requires exhaustive datasets.

Occlusions

* Fingers are similar to each other.
e Self-occlusions of joints are common.

* Occlusions can be caused by grasped objects.

Image Annotations

* The hand covers a small area in the image.

e Manual annotations are difficult and
ambiguous.

Proposed System

* No adequate hand model.

* No densely annotated training data.




Starting Point

input image fully convolutional neural network dense pose deformation-free space deformable hand mode

fully convolutional neural network



Implementation Steps

Hand Model Model Fitting Dense Shape Regression
Create a statistical deformable hand Fit the model into spare annotations of Train a dense hand pose estimation
model with shape deformations learned RGB images to generate the ground truth system.

from hand scans. data.



Task 1

Hand Model




Definition

M(B,0;p) : RIBXIOI 5 R3N

e N - number of vertices

® beta - shape parameters

Shape: Low-Dimensional Embedding

e theta - pose parameters

Pose: Linear Blend Skinning

e phi - a set of learned parameters

principal components, skinning weights,
pose-dependent displacements...



Registrations




UV Map

e Abijective map from the 3D hand
model to a two-dimensional
space.

e (u, v) coordinates




Demo



Task 2

Model Fitting




Pose and Shape Optimization

® Reconstruction Error Term

Penalizes the difference between the model
joints/vertices and data annotations.

® Prior Error Term

Addresses pose ambiguity issues with 2D
annotations.

{ﬁ*r 07} = aTgIEIBH(EY + Epr:or Ereg)

e Regularization Error Term

Regularizes the optimization procedure to ensure
realistic deformations and matrix sparsity.



Dataset Generation

e Panoptic DomeDb - 30 synchronized HD cameras.
® [ncludes camera parameters and 3D annotations.
e We take 25,000 video frames.

e We use both hands.

e 30 x 25,000 x 2 = 1,500,000 samples



Model Fitting




Pose Ambiguity with 2D Annotations

0 0
50 50 |
]
100 100 - 100 |
200 |+
150 150 | 300
400 |
200 200 500 |-
E00 |- T
250 :0 [ — - -
— i (el s = i 1 i i I §
0 200 400 600 800 1000 1200 0 200 400 00 800 1000 1200
300 300
0 50 100 150 200 250 300

Rendered Hand Pose Dataset HandDB



Task 3

Dense Shape Regression




Recap

input image fully convolutional neural network dense pose deformation-free space deformable hand model

Dense Regression Network



Training Data

GROUND TRUTH MASK SEGMENTATION (W)Y
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Neural Network Idea

input image dense pose deformation-free space subject-specific model

Hourglass network

pose

shape

encoder renderer

Dense Hand Pose Renderer
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