IMPERIAL COLLEGE LONDON

# **Dense Hand Pose Estimation**

MRes Individual Project Presentation 12 September 2018

Supervisor

### **Dense Hand Pose Estimation**



### **Applications**

- Human motion tracking
- Animating digital characters
- Human-computer interaction

- Recognizing body language
- Recognizing human activities
- Generating body models

### Challenges

#### **Pose Space**

- A hand has 27 degrees of freedom.
- Deep learning requires exhaustive datasets.

#### **Occlusions**

- Fingers are similar to each other.
- Self-occlusions of joints are common.
- Occlusions can be caused by grasped objects.

### **Image Annotations**

- The hand covers a small area in the image.
- Manual annotations are difficult and ambiguous.

### **Proposed System**

- No adequate hand model.
- No densely annotated training data.

# **Starting Point**





### **Implementation Steps**



**Hand Model** 

Create a statistical deformable hand model with shape deformations learned from hand scans.



**Model Fitting** 

Fit the model into spare annotations of RGB images to generate the ground truth data.



**Dense Shape Regression** 

Train a dense hand pose estimation system.

#### Task 1

# **Hand Model**

### **Definition**

$$M(\boldsymbol{\beta}, \boldsymbol{\theta}; \phi) : \mathbb{R}^{|\boldsymbol{\beta}| \times |\boldsymbol{\theta}|} \to \mathbb{R}^{3N}$$

- N number of vertices
- beta shape parameters

  Shape: Low-Dimensional Embedding
- theta pose parameters

Pose: Linear Blend Skinning

• phi - a set of learned parameters principal components, skinning weights, pose-dependent displacements...













### **UV** Map



- A bijective map from the 3D hand model to a two-dimensional space.
- (u, v) coordinates

# Demo

# Task 2 Model Fitting

### **Pose and Shape Optimization**

# $\{\boldsymbol{\beta}^*, \boldsymbol{\theta}^*\} = arg \min_{\boldsymbol{\beta}, \boldsymbol{\theta}} (E_Y + E_{prior} + E_{reg})$

#### Reconstruction Error Term

Penalizes the difference between the model joints/vertices and data annotations.

#### Prior Error Term

Addresses pose ambiguity issues with 2D annotations.

### Regularization Error Term

Regularizes the optimization procedure to ensure realistic deformations and matrix sparsity.

### **Dataset Generation**

- Panoptic DomeDb 30 synchronized HD cameras.
- Includes camera parameters and 3D annotations.
- We take 25,000 video frames.
- We use both hands.
- $30 \times 25,000 \times 2 = 1,500,000 \text{ samples}$

# **Model Fitting**





## Pose Ambiguity with 2D Annotations







Task 3

# Dense Shape Regression

### Recap



## **Training Data**



# **Future Work**

### **Neural Network Idea**



**Dense Hand Pose Renderer** 

#### Map data ©2018 Google The Regent's Park The British Library Lord's Cricket Ground GREEN Madame A404 Tussauds London The British Museur MARYLEBONE Selfridges London 6 Marble Arch Westfield London Royal Academy of Arts Hyde Park ERD'S Hard Rock Cafe Holland Park College Big KENSINGTON **Buckingham Palace** Victoria an BELGRAVIA Albert Museur A315 Saatchi Gallery 🖁 RSMITH PIMLICO Chelsea and U.S. Embassy, Londo ospital Westminster Hospital Battersea Power Station 📮 Stamford Bridge 💝 A3219 Battersea Park A3205 A3276 A308 A3205 ishops Park The Hurlingham Club

# Department of Computing

Imperial College London

